System Architecture & Data Flow

Laboratory Integration Network

Our module integrates with six leading marine fuel testing laboratories through different data channels:
LaboratoryIntegration MethodData FormatProcessing Type
Viswa LabsAPI IntegrationJSONReal-time API calls
TribocareAPI IntegrationJSONReal-time API calls
FOBASAPI IntegrationJSONReal-time API calls
VPS MarineSnowflake DatabaseStructured DataDatabase queries
Bureau Veritas (BV)Email AttachmentsXML + ReportXML file extraction
MaritecEmail AttachmentsXML + ReportXML file extraction

Process Workflow: Step-by-Step Implementation

Phase 1: Data Acquisition & Integration

Objective: Establish comprehensive fuel oil data collection from multiple laboratory sources using different integration methods

Step 1: API-Based Data Collection

The Challenge: Traditional batch processing approaches failed to handle the dynamic nature of laboratory data updates, leading to data inconsistencies and processing gaps. Our Revolutionary Solution: We engineered an intelligent cyclic data synchronization system that maintains perfect data integrity across all API-based laboratories.
Key Innovation: This cyclic approach ensures zero data loss while optimizing API calls and maintaining real-time synchronization across all laboratory sources.

Step 2: Snowflake Database Integration

Implementation: VPS Marine Data Extraction
Snowflake Integration Features:
  • Direct Database Connection: Secure connection to VPS Snowflake instance
  • Scheduled Queries: Automated data retrieval at regular intervals
  • Data Warehouse Access: Access to historical and real-time VPS fuel analysis data
  • Query Optimization: Efficient data extraction with minimal resource usage

Step 3: Email-Based Data Processing with XML Extraction

Implementation: BV and Maritec Laboratory Data
Email Processing Workflow:
  • Email Monitoring: Continuous monitoring of designated email accounts
  • Attachment Identification: Automatic detection of emails with attachments
  • Dual File Processing:
    • XML File: Contains structured data for extraction
    • Report File: Actual laboratory report for reference
  • XML Data Extraction: Automated parsing of XML files to extract fuel analysis data
  • Data Validation: Verification of extracted data against laboratory standards

Phase 2: Data Processing & Standardization

Objective: Process and standardize data from multiple sources into unified format

Step 4: Multi-Source Data Processing

⚡ API Data Processing

JSON parsing for real-time API data with advanced features:

  • Dynamic Page Detection: Automatically reads total page count from API responses (Tribocare)
  • Comprehensive Iteration: Systematically processes every page without data loss
  • Memory-Efficient Accumulation: Optimally manages large datasets during collection
  • Intelligent Job Discovery: Automatically identifies all relevant job IDs within specified date ranges (FOBAS)
  • Automatic Token Refresh: Seamlessly handles token expiration with zero data loss
  • Retry Logic: Implements exponential backoff for maximum reliability
  • Parallel Processing: Optimizes throughput while respecting API rate limits

❄️ Snowflake Connector

Direct database connectivity for VPS data with enterprise-grade features:

  • High-Performance Queries: Optimized SQL execution
  • Secure Connections: Enterprise-level security protocols
  • Automated Scheduling: Time-based data extraction
  • Data Warehouse Integration: Seamless historical data access

📧 Email Parser

IMAP/POP3 protocols for email attachment processing:

  • Real-time Monitoring: Continuous email surveillance
  • Smart Filtering: Intelligent attachment detection
  • Multi-account Support: Simultaneous email monitoring
  • Secure Processing: Encrypted email handling

📄 XML Parser

Advanced XML processing for BV and Maritec data:

  • Schema Validation: XML structure verification
  • Data Extraction: Intelligent content parsing
  • Error Handling: Robust exception management
  • Format Standardization: Unified data output

Step 5: Data Validation & Quality Assurance

Validation Framework:
  • Schema Validation: Ensuring data conforms to expected structure
  • Data Type Verification: Confirming correct data types for all fields
  • Range Checking: Validating fuel parameters are within acceptable ranges
  • Duplicate Detection: Identifying and handling duplicate test results
  • Missing Data Handling: Managing incomplete or missing data points
Fuel Classification Algorithm: Advanced fuel classification system that handles all edge cases and data variations with mathematical precision: Fuel Classification Algorithm=f(BDN Sulfur,Lab Sulfur)\text{Fuel Classification Algorithm} = f(\text{BDN Sulfur}, \text{Lab Sulfur}) Classification Logic: Fuel Type={ULSFO/LSMGOif Seffective0.1%VLSFOif 0.1%<Seffective0.5%HSFOif 0.5%<Seffective<3.6%Cannot be calculatedif Seffective=Unknownif Seffective3.6%\text{Fuel Type} = \begin{cases} \text{ULSFO/LSMGO} & \text{if } S_{\text{effective}} \leq 0.1\% \\ \text{VLSFO} & \text{if } 0.1\% < S_{\text{effective}} \leq 0.5\% \\ \text{HSFO} & \text{if } 0.5\% < S_{\text{effective}} < 3.6\% \\ \text{Cannot\ be\ calculated} & \text{if } S_{\text{effective}} = \varnothing \\ \text{Unknown} & \text{if } S_{\text{effective}} \geq 3.6\% \end{cases} Where: Seffective={BDN Sulfurif availableLab SulfurotherwiseS_{\text{effective}} = \begin{cases} \text{BDN Sulfur} & \text{if available} \\ \text{Lab Sulfur} & \text{otherwise} \end{cases}

Step 6: Data Transformation & Standardization

Transformation Process:
  • Unit Standardization: Converting all measurements to standard units
  • Field Mapping: Mapping laboratory-specific fields to unified schema
  • Data Enrichment: Adding metadata and processing timestamps

Phase 3: Database Storage & Management

Objective: Efficiently store processed data in MongoDB with proper indexing and organization

Step 7: MongoDB Storage Architecture

Storage Features:
  • Indexing Strategy: Optimized indexes for fast query performance
  • Data Partitioning: Efficient data organization by vessel and date
  • Backup & Recovery: Automated backup and disaster recovery procedures

Step 8: Data Repository Management

Repository Features:
  • Version Control: Tracking data changes and updates
  • Audit Trail: Complete logging of all data processing activities
  • Data Lineage: Tracing data from source to final storage

Phase 4: Advanced Analytics & Risk Assessment

Objective: Implement sophisticated fuel analysis algorithms for risk assessment and compliance monitoring

Step 9: CatFine (Aluminium + Silicon) Risk Categorization System

Implementation Strategy: Our advanced CatFine analysis system extracts concentration data from the latest bunkering operations and applies multi-tier risk assessment protocols. Primary Safety Threshold: A critical threshold of 15 mg/kg is implemented as the primary safety benchmark: Primary Risk Assessment={Safe Levelif CatFine15 mg/kgRisky Levelif CatFine>15 mg/kg\text{Primary Risk Assessment} = \begin{cases} \text{Safe Level} & \text{if } \text{CatFine} \leq 15 \ \text{mg/kg} \\ \text{Risky Level} & \text{if } \text{CatFine} > 15 \ \text{mg/kg} \end{cases} Enhanced Multi-Tier Risk Classification: Our system implements three sophisticated risk bands for comprehensive vessel safety management: Advanced Risk Categorization={Safe Levelif CatFine15 mg/kgModerately Elevatedif 15<CatFine25 mg/kgElevated Riskif 25<CatFine35 mg/kgDangerously Highif CatFine>35 mg/kg\text{Advanced Risk Categorization} = \begin{cases} \text{Safe Level} & \text{if } \text{CatFine} \leq 15 \ \text{mg/kg} \\ \text{Moderately Elevated} & \text{if } 15 < \text{CatFine} \leq 25 \ \text{mg/kg} \\ \text{Elevated Risk} & \text{if } 25 < \text{CatFine} \leq 35 \ \text{mg/kg} \\ \text{Dangerously High} & \text{if } \text{CatFine} > 35 \ \text{mg/kg} \end{cases} Risk Level Descriptions:
  • Safe Level (≤ 15 mg/kg): Vessel operates within optimal safety parameters
  • Moderately Elevated (15-25 mg/kg): Minimal risk profile with recommended monitoring protocols
  • Elevated Risk (25-35 mg/kg): Requires close monitoring and enhanced fuel treatment procedures
  • Dangerously High (> 35 mg/kg): Critical status requiring immediate intervention and emergency protocols

Step 10: Sulfur Compliance Verification System

Compliance Algorithm: Our intelligent compliance system performs real-time comparison between laboratory-tested sulfur values and Bunker Delivery Note (BDN) specifications for each vessel in the fleet. Sulfur Compliance Status={Compliantif StestedSBDNNon-Compliantif Stested>SBDNNot Applicableif Stested= or SBDN=\text{Sulfur Compliance Status} = \begin{cases} \text{Compliant} & \text{if } S_{\text{tested}} \leq S_{\text{BDN}} \\ \text{Non-Compliant} & \text{if } S_{\text{tested}} > S_{\text{BDN}} \\ \text{Not Applicable} & \text{if } S_{\text{tested}} = \varnothing \ \text{or } S_{\text{BDN}} = \varnothing \end{cases} Fleet-Level Compliance Assessment: The system generates comprehensive fleet-wide compliance reports:
  • Individual Vessel Analysis: Detailed compliance status for each vessel
  • Non-Compliant Vessel Identification: Automatic flagging and listing of vessels exceeding BDN limits
  • Fleet Compliance Summary: Overall fleet status with full compliance verification

Step 11: Advanced Visualization & Interactive Analytics

Dual-Plot Visualization System: Our module generates two sophisticated interactive plots using Plotly for comprehensive fuel analysis visualization: CatFine Risk Visualization:

CatFine Level in Fuel Oil - as per the Latest Bunker Report of Fleet 1

Sulfur Compliance Visualization:

Sulfur Content in Fuel Oil - as per the Latest Bunker Report of Fleet 1

Visualization Features:
  • Interactive Interface: Real-time data exploration with zoom and filter capabilities
  • Multi-Parameter Display: Simultaneous visualization of BDN and tested values
  • Compliance Indicators: Visual compliance status with color-coded vertical lines
  • Threshold Markers: Clear safety threshold indicators for immediate risk assessment